Mészáros Róbert, Ph. D.

Mail:H-1117 Budapest, Pázmány Péter sétány 1/A
Curriculum Vitae

Personal data:
Born:1967, Kecskemét
Children:Márton (2005)

Education, degrees:
1998Ph. D. in Chemistry, ELTE University
1991M. Sc. in Chemistry, ELTE University

2003Visiting Scientist, Department of Chemistry, Surface Chemistry, Royal Institute of Technology, Stockholm, Sweden
2000-2002Marie Curie postdoctoral fellow, Unilever Research, Port Sunlight, United Kingdom
1999-Assistant professor, Department of Colloid Chemistry, Institute of Chemistry, ELTE University, Budapest
1991-1999Assistant lecturer, Department of Colloid Chemistry, Institute of Chemistry, ELTE University, Budapest

Fellowships, awards:
2003:Békésy György Fellowship (Hungarian Ministry of Education)
1993:Wolfram Ervin Award of Junior Hungarian Colloid Scientists


Coordination of funded projects

2005-2008“Self Organisation under Confinement”-{SOCON}: MRTN-CT-2004-512331, Marie-Curie Research Training Network, EU-6 Framework Program, (principal investigator)
2005{“State-of-Art Determination of Electrophoretic Mobility”}, GVOP-3.2.1.-2004-04-0344/3.0, Joint Research Infrastructure Development Grant of the European Commission and the Hungarian Ministry of Economics, GVOP Program, (principal investigator)
2005-2008“Aggregation of Amphiphilic Molecules”: OTKA T 049673, Project of the Hungarian Research Fund, (participant)
2004-2005"Bulk and Surface Properties and Nanocomplexes of Macromolecules and Surfactants”: • Marie-Curie European Reintegration Grant- MERG-CT-2004-510302, EU-6 Framework Program, (principal investigator)
2003-2007“Novel Nanostructures and Surface layers of Macromolecules and Surfactants: Swedish-Hungarian Joint Research Project supported by the Hungarian Academy of Sciences and The Royal Swedish Academy of Sciences (principal investigator)
2003-2007“Adsorption and Self-assembly of Ionic Surfactants in Aqueous Solutions“: OTKA T 043621, Project of the Hungarian Research Fund, (participant)
2001-2005“Bulk and Surface Microstructures of Catanionic Surfactants”: OTKA F034838, Project of the Hungarian Research Fund, (participant)
2001-2004“Phase Transition in the Free Aqueous Surface of Catanionic Surfactants“: FKFP 0051/2001, Project of the Hungarian Ministry of Education, (participant)
1998-2002 “Investigation of the Interrelation between the Structure and Electromechanic Properties of Polymergel/Surfactant Systems”: OTKA T 029780 Project of the Hungarian Research Fund, (participant)

1995:-International Association of Colloid and Interface Scientists
1995:Colloid Chemical Committee of the Hungarian Academy of Sciences

Research profile:

Macromolecule/surfactant interaction

1. The primary focus is on the role of charge density and molecular architecture of polyelectrolytes in polyelectrolyte/surfactant interaction. Our recent results revealed that in the case of hyperbranched polyelectrolyte/oppositely charged surfactant systems, a colloid dispersion of polymer/surfactant nanoparticles may form at high surfactant concentrations. The surface and phase properties of polyelectrolyte/surfactant solutions are in direct connection with the formation of these polymer/surfactant nanoparticles. This latter phenomenon is an exciting new area, with great potential of applications. This research line has also been extended towards the investigation of the mixtures of charged microgels and surfactants.
2. Another important aspect of our current research is to understand the role of the molecular weight in the polymer/surfactant interaction. This topic is not clearly understood but of paramount importance due to the growing number of Home and Personal Care formulations in which the application of low and middle molecular weight polymer is sometimes preferred.

Surface behavior of aqueous solutions of macromolecules and surfactants
The interfacial behavior of multicomponent solutions, containing mixtures of surfactants or polymers and surfactants, is in direct connection with their capability of delivering benefits (like detergency, oral and hair care, etc.). In the ongoing projects we focus on the surface behavior of macromolecule and amphiphile mixtures at different interfaces. This includes the determination of dynamic and equilibrium surface tension of aqueous solutions of polymers and surfactants and the development of a thermodynamic analysis of these data. The research is also connected to international collaborations (see for instance the network of {SOCON}.

List of Publications

1.Neutrális polimerek kompetitív adszorpciója szilárd/folyadék határfelületeken
Csempesz, F., Mészáros, R., Kovács, P.
Kémiai Közlemények 76, 67., (1993)

2.Izopiesztikus módszer az adszorpciós réteg átlagos abszolút összetételének meghatározására szilárd gőzelegy határfelületeken
Nagy, M., Domján, A., Mészáros, R.
Magyar Kémiai Folyóirat 11, 460., (1995)

3.Study of adsorption from dilute solutions on activated carbon: Part 1. Novel representation of experimental data
R. Mészáros, M. Nagy, and G. Veress
Adsorption Science and Technology 13, 327., (1996)

4.Study of adsorption from dilute solutions on activated carbon: Part 2. Some exotic adsorption isotherm
R. Mészáros, M. Nagy, and G. Veress
Adsorption Science and Technology 13, 341., (1996)

5.Híg vizes alkohol oldatok adszorpciója aktiv szénen
Mészáros, R.
Magyar Kémiai Folyóirat-Kémiai Közlemények 9, 388., (1998)

6.„Non-equilibrium aspects of adsorption from dilute aqueous solution of 1­propanol onto activated carbon”
R. Mészáros, M. Nagy, I.Varga, K.László.
Langmuir 15, 1307-1312, (1999)

7.„Investigation of the two dimensional phase behaviour of symmetric chain catanionic surfactants”
T.Gilányi, R.Mészáros, I.Varga
Langmuir 16, 3200-3205, (2000)

8.„Preparation and characterization of monodisperse NIPA microgels”
T.Gilányi, I.Varga, R.Mészáros, G.Filipcsei, M.Zrínyi
Physical Chemistry and Chemical Physics (PCCP) 2, 1973-1977, (2000)

9.„Kationos-anionos kettos tenzidsók szabadfelszíni adszorpciója”
Gilányi T., Mészáros R. és Varga I.
Magy. Kémiai Folyóirat 107, 476-484, (2001)

10.„Interaction of Monodisperse Poly(N-isopropylacrylamid) Microgel Particles with Sodium Dodecyl sulfate in aqueous solution”
T.Gilányi, I.Varga, R.Mészáros, G.Filipcsei, M.Zrínyi
Langmuir 17, 4764-4769, (2001)

11.„Ionos tenzidek kölcsönhatása polimer mikrogél részecskékkel”
Gilányi T., Varga I. , Mészáros R., Filipcsei G., Zrínyi M.
Magy. Kémiai Folyóirat 107, 485-490, (2001)

12.„Characterization of ionic surfactant aggregates by means of activity measurements of a trace probe electrolyte”
I.Varga, T.Gilányi, R.Mészáros
Progress in Colloid and Polymer Science 117, 136-140, (2001)

13.„Determination of binding isotherms of ionic surfactants in polymer gels”
T.Gilányi, R.Mészáros, I.Varga
Progress in Colloid and Polymer Science 117, 141-144, (2001)

14.„The effect of cross link density on the internal structure of Poly(N-isopropylacrylamid) (NIPAM) Microgels”
I.Varga, T.Gilányi, R.Mészáros, G.Filipcsei, M.Zrínyi
J.Phys.Chem.B 105, 9071-9076, (2001)

15.„A keresztkötés-suruség hatása a poli(N-izopropil-akrilamid) mikrogél részecskék szerkezetére”
Varga I., Gilányi T., Mészáros R., Filipcsei G., Zrínyi M.
Magy. Kémiai Folyóirat 108, 199-203, (2002)

16.“Adsorption and electrokinetic properties of polyethyelenimine on silica surfaces"
R. Mészáros, L. Thompson, M. Bos, P. de Groot
Langmuir 18, 6164-6169, (2002)

17.“Interaction of sodium dodecyl sulfate with polyethyleneimine: Surfactant induced polymer solution colloid dispersion transition “
R. Mészáros, L. Thompson, M. Bos, I. Varga, T.Gilányi
Langmuir 19, 609-615, (2003)

18.“Adsorption properties of polyethyleneimine on silica surfaces in the presence of sodium dodecyl sulfate“
R. Mészáros, L. Thompson, I. Varga, T.Gilányi
Langmuir 19, 9977-9980, (2003)

19.“Experimental investigation of counterion dependence of alkali decyl sulfate adsorption at the air/solution interface”
I.Varga, T.Gilányi, R.Mészáros
Progress in Colloid and Polymer Science 125, 151-154, (2004)

20.“Molecular interaction model of Polymer-Surfactant Complex Formation”
T.Gilányi, I.Varga., R.Mészáros
Progress in Colloid and Polymer Science 125, 179-183, (2004)

21.Adsorption of Polyethylenimine on Silica Surfaces: Effect of pH on the Reversibility of Adsorption
R.Mészáros, T.Gilányi, I.Varga
Langmuir 20, 5026-5029, (2004)

22.“Effect of Sodium Dodecyl Sulfate on Adsorbed Layers of Branched Polyethylene Imine”
Andra Dedinaite, Robert Mészaros, Per M. Claesson
J.Phys.Chem.B 108, 11645-11653, (2004)

23.”Specific counter ion effect on the adsorption of alkali decyl sulfate surfactants at air/solution interface”
T.Gilányi, I.Varga., R.Mészáros
Physical Chemistry and Chemical Physics (PCCP) 6, 4338-4346, (2004)

24.”Observation of a liquid-gas phase transition in monolayers of alkyltrimethylammonium alkyl sulfates adsorbed at the air/water interface”
I.Varga, T.Keszthelyi, R.Mészáros, O.Hakkel, T.Gilányi
J.Phys. Chem. B 109, 872-878, (2005)

25.”Novel Method for the Preparation of Anionic Surfactant-Selective Electrodes“
I.Varga, R. Mészáros, Z. Szakács T.Gilányi
Langmuir 21, 6154-6156, (2005)

26.”Effect of Polymer Molecular Weight on the Polymer/Surfactant Interaction”
R. Mészáros, I.Varga, T.Gilányi
J. Phys. Chem. B. 109, 13538-13544, (2005)

27.”Deuterium Isotope Effects on the Interaction between Hyperbranched Polyethylene imine and an Anionic Surfactant”
L. A. Bastardo, R. Mészáros, I.Varga, T.Gilányi, Claesson, P. M.
J. Phys. Chem. B. 109(33), 16196-16202, (2005)


Self-Organization under Confinement

Contract N: MRTN-CT-2004-512331, Marie-Curie Research Training Network, {SOCON}(Sixth Framework Program of the European Commission)

The focus of the network is on aqueous films, which are either confined between two solid surfaces or by air (foam film) or oil (emulsion film), respectively. We will put emphasis on complex self-organizing systems of environmentally friendly components, such as sugar-based surfactants and polymeric carbohydrate derivatives, but we will also use traditional surfactants and polymers. The most applications explore surfactant mixtures as well as surfactant-polymer mixtures. Hence, to advance the increased use of more environmentally friendly components synergistic and antagonistic effects in multicomponent systems have to be understood. The main objectives of the network are:
• to explore the relation between self-assembled structures in bulk solution, at one interface, and confined between two interfaces.
• understand, predict, and control trapped non-equilibrium structures at interfaces and the corresponding surface forces.
• establish the correlation between properties of single films and complex colloidal systems.
• promote the use of new environmentally friendly compounds in products and processes based on complex colloidal systems.

In the project the following partners are involved :

1. Department of Chemical and Biochemical Engineering,University College Dublin, Ireland, (Dr. Cosima Stubenrauch team leader and Coordinator of the project)
2. Kungliga Tekniska Högskolan , [http://www.kth.se] {KTH}, Stockholm, Sweden, (Prof. Dr. Per Claesson, team leader)
3. Sofia University „St Kliment Ohridski“, Sofia University , Sofia, Bulgaria (Prof. Dr. Emil Manev, team leader)
4. Max Planck Institut für Kolloid- und Grenzflächenforschung, MPI-KG, Potsdam, Germany, Dr. Regine v. Klitzing, team leader
5. Vilnius University, Vilnius, Lithuania, (Dr. Ricardas Makuska, team leader)
6. University of Oxford, Oxford, United Kingdom, (Prof. Jacob Klein, team leader)
7. Akzo Nobel Surface Chemistry AB, Sweden, (Dr. Ingegard Johansson team leader)
8. Eotvos University, Budapest, Hungary, (Dr. Robert Meszaros, team leader)
9. University of Aarhus, Aarhus, Denmark, (Prof. Dr. Jan Skov Pedersen, team leader )
10. Université Paris Sud, Orsay, France, (Prof. Dr. Dominique Langevin team leader)
11. Lunds Universitet, Lund, Sweden, (Prof. Per Linse team leader)
12. Universität zu Köln, Germany, (Dr. Dirk Blunk, team leader)
13. University of Durham, United Kingdom, (Dr. Colin Bain team leader)

The contributors of the Hungarian team:

Team leader:Dr. Róbert Mészáros
Senior researchers:Prof. Dr. Tibor Gilányi, Dr. Imre Varga (Institute of Chemistry, Eötvös University).
Recrruited researchers: Amália Mezei Ph. D student, Nicolas Peron post-doctoral fellow

„Új generációs, elektroforetikus mozgékonyság meghatározó készülék beszerzése”
“State-of-Art Determination of Electrophoretic Mobility”,
GVOP-3.2.1.-2004-04-0344/3.0: Joint Research Infrastructure Development Grant of the European Comission and the Hungarian Ministry of Economics, GVOP Program

In the framework of this project a Malvern Zetasizer NanoZ equipment was purchased in 2005. This instrument represents the most modern technology of zetasizers for the determination of electrophoretic mobility of charged nanoparticles in different media. The electrophoretic mobility determination is based on the so-called Laser Doppler velocimetry. The Laser Doppler electrophoresis is a technique used to measure the movement of charged particles in an electric field which utilizes the well-known Doppler effect. Light scattered from a moving particle experiences a frequency shift. Since the frequency of light is so high (1014Hz), the shift in frequency can only be measured by an optical mixing or interferometric technique. This is done in practice using a pair of mutually coherent laser beams derived from a single source and following similar path lengths. One of these beams must pass through the particle dispersion (this is called the scattering beam). The other beam (called the reference beam) can either pass through the sample or can be routed around the cell. The important point is that the two beams must be crossed at some point after the scattering beam has passed through the sample. By comparing the difference in frequency (i.e. the Doppler shift) between the scattered light and the incident light (the reference beam), the mobility of the particles under the influence of the applied electric field can be determined (see for details Malvern).

This investment resulted in a significant improvement of the research infrastructure of the host institute , Institute of Chemistry. The grant is also supposed to considerably raise the international competitiveness of Róbert Mészáros’ research group. In the ongoing projects two main areas have been intensively addressed by means of our Malvern Zetasizer NanoZ equipment:
Surface and bulk interaction between oppositely charged macromolecules and surfactants
Synthesis and characterization of novel composite microgels with controlled structure

The contributors of the project:

Team leader:Dr. Róbert Mészáros
Researchers:Prof. Dr. Tibor Gilányi, Dr. Imre Varga, Horváth Judit (Institute of Chemistry, Eötvös University)