Jedlovszky Pál, Ph. D.

E-mail:pali_at_para.chem.elte.hu
Phone:+36-1-209-0555/1552
Mail:H-1117 Budapest, Pázmány Péter sétány 1/A
Fax:+36-1-3722592
Curriculum Vitae

Personal data:
Born:1967, Budapest
Married:1995
Children:Krisztina (1999), Pál (2002)

Education, degrees:
1996Ph. D. in Chemistry, Hungarian Academy of Sciences (supervisor: Gábor Pálinkás)
1991M. Sc. in Chemistry, ELTE University , Budapest (supervisor: László Pusztai)

Positions:
2003-Békésy György fellow, Department of Colloid Chemistry , ELTE University , Budapest
2000-Guest researcher, Department of Physics , University of Trento , Italy
2001-2003Magyary Zoltán fellow, Department of Colloid Chemistry , ELTE University , Budapest
2000-2001Invited researcher,
1997-2000Postdoctoral training, Department of Physiology and Biophysics , Mount Sinai School of Medicine, New York University, New York, USA
1996-1997Postdoctoral training, Department of Physics , University of Trento , Italy
1995-1996Research assistant, Department of Solution Chemistry, Central Research Institute of Chemistry , Hungarian Academy of Sciences , Budapest
1992-1995Ph.D. Scholar, Department of Solution Chemistry, Central Research Institute of Chemistry , Hungarian Academy of Sciences , Budapest
1991-1992Visiting graduate student, Clarendon Laboratory, Oxford University, Oxford, United Kingdom

Fellowships, awards:
2003Békésy György Fellowship ( Hungarian Ministry of Education )
2001Magyary Zoltán Fellowship ( Foundation for Hungarian Research and Higher Education )
1998Eötvös Fellowship of the Hungarian State ( Hungarian Ministry of Education )
1996Eötvös Fellowship of the Hungarian State ( Hungarian Ministry of Education )
1991Soros Fellowship ( Soros Foundation )
1991Pro Scientia Gold Laureate ( National Scientific Student Council )

Grants:
2002-2005INTAS 2001-0067 (scientific coordinator)
2002-2004OTKA F038187 (principal investigator)
2001-2002Magyary Zoltán research grant (grantee)
1996-1999OTKA F019474 (participant)
1995 OTKA W15245 (grantee)
1994-1996OTKA F013963 (principal investigator)

Memberships:
1999 Eötvös Loránd Physics Society
1993 European Molecular Liquids Group
1992 Society of the Pro Scientia Gold Laureates
1991 Hungarian Oxford Society


Main research interest:

Computer simulation of disordered phases and interfaces

Projects:

- Computer simulation of neat bulk molecular liquids

- Water
- Investigation of the molecular level origin of the anomalous properties of water
- Water under extreme conditions (under negative pressure, in supercooled states)
- Properties of water around the critical point
- Other hydrogen bonded liquids
- Hydrogen fluoride
- Formic acid
- Methanol
- Aprotic dipolar liquids
- Halogenated methane derivatives (CH2F2, CH2Cl2), acetone, acetonitrile, etc.

- Computer simulation of phospholipid bilayer membranes

- Neat DMPC membrane and DMPC/cholesterol mixed membranes
- Methodological issues
- Headgroup structure
- Structure of the hydrating water
- Crossmembrane free energy profile of small molecules
- Analysis of the intermolecular voids

- Hydrophobic hydration, water at interfaces with apolar phases

- Preferred orientation of water relative to the interface
- Dependence on the composition of the apolar phase
- Dependence on the composition of the aqueous phase
- Dependence on the thermodynamic conditions
- Dependence on the size of the hydrophobic moiety
- Properties of the interface and their dependence on the thermodynamic conditions
- Interfacial width, mutual solubilities, phase diagrams, etc.

- Adsorption at aqueous/apolar interfaces

- Adsorption of surfactants
- Dependence of the properties of the adsorbed layer on the polar headgroup
- Adsorption of anionic/cationic surfactants
- Effect of the counterions
- Adsorption from the aqueous phase
- Clustering of water and solute
- Dependence of the solute molecule and its concentration on the interfacial properties
- Comparison with sum frequency generation spectroscopic measurements

- Computer simulation of micellar systems

- Molecular level structure of the micelle
- Distribution of the intermolecular voids
- Structure and dynamics of water at the surface of the micelle

- Computer simulation of the free energy of solvation and mixing

- Dependence of the free energy of solvation (mixing) on the structural details of the solute

List of Publications

Akadémiai Nagydoktori Értekezés letöltése

1.Application of a quartz-crystal microbalance in the study of ion and solvent sorption in polymer film electrodes. I.
Gy. Inzelt, P. Jedlovszky, K. Martinusz, and P. Hudáky
Acta Chimica Hung. 128, 797 (1992), in Hungarian: Magyar Kémiai Folyóirat 96, 263 (1990).

2. Reverse Monte Carlo simulation of liquid water
P. Jedlovszky, I. Bakó, and G. Pálinkás
Chem. Phys. Letters 221, 183 (1994).

3. Reverse Monte Carlo Simulation of a Heteronuclear Molecular Liquid: Structural Study of Acetonitrile
T. Radnai and P. Jedlovszky
J. Phys. Chem. 98, 5994 (1994).

4. Network of strongly interacting atoms in liquid argon
G. Pálinkás and P. Jedlovszky
Chem. Phys. 185, 173 (1994).

5. Investigation of the structure of liquid formic acid
I. Bakó, P. Jedlovszky, G. Pálinkás, and J. C. Dore
in: Hydrogen Bond Networks (Proceedings of the NATO ASI, Ser. C, Vol. 435), eds.: M. C. Bellisent Funel and J. C. Dore, Kluwer (Dordrecht), 1994, pp.119-127.

6. A reverse Monte Carlo and RISM integral equation study of liquid nitrogen
T. Radnai, I. Bakó, P. Jedlovszky, and G. Pálinkás
Mol. Phys. 83, 495 (1994)

7. Monte Carlo simulation of liquid acetone with a polarizable molecular model
P. Jedlovszky and G. Pálinkás
Mol. Phys. 84, 217 (1995).

8. Structural investigation of liquid formic acid: X-ray and neutron diffraction and reverse Monte Carlo study
P. Jedlovszky, I. Bakó, G. Pálinkás, and J. C. Dore
Mol. Phys. 86, 87 (1995).

9. Local order in some aprotic dipolar liquids
T. Radnai, I. Bakó, P. Jedlovszky, and G. Pálinkás
Mol. Simul. 16, 345 (1996).

10. Investigation of the uniqueness of the reverse Monte Carlo method: Studies on liquid water
P. Jedlovszky, I. Bakó, G. Pálinkás, T. Radnai, and A. K. Soper
J. Chem. Phys. 105, 245 (1996).

11. Reverse Monte Carlo analysis of neutron diffraction results: Water around its critical point
P. Jedlovszky and R. Vallauri
J. Chem. Phys. 105, 2391 (1996), Erratum: J. Chem. Phys. 106, 2988 (1997).

12. A New Five-Site Pair Potential for Formic Acid in Liquid Simulations
P. Jedlovszky and L. Turi
J. Phys. Chem. A 101, 2662 (1997), Erratum: J. Phys. Chem. A 103, 3796 (1999).

13. Role of the C-H...O Hydrogen Bonds in Liquids: A Monte Carlo Simulation Study of Liquid Formic Acid
Using a Newly Developed Pair Potential
P. Jedlovszky and L. Turi
J. Phys. Chem. B 101, 5429 (1997), Erratum: J. Phys. Chem. B 103, 3510 (1999).

14. Structural study of liquid methylene chloride with reverse Monte Carlo simulation
P. Jedlovszky
J. Chem. Phys. 107, 7433 (1997).

15. Orientational correlation in liquid and amorphous carbon tetrachloride: A reverse Monte Carlo study
P. Jedlovszky
J. Chem. Phys. 107, 7433 (1997).

16. Computer simulation study of liquid HF with a new effective pair potential model
P. Jedlovszky and R. Vallauri
Mol. Phys. 92, 331 (1997).

17. Computer simulations of liquid HF by a newly developed polarizable potential model
P. Jedlovszky and R. Vallauri
J. Chem. Phys. 107, 10166 (1997).

18. Structural properties of liquid HF: a computer simulation investigation
P. Jedlovszky and R. Vallauri
Mol. Phys. , 93, 15 (1998).

19. Investigation of the orientational correlation of the molecules in liquid H2S with reverse Monte Carlo simulation
P. Jedlovszky
Mol. Phys. , 93, 939 (1998).

20. Analysis of the hydrogen bonded structure of water from ambient to supercritical conditions
P. Jedlovszky, J. P. Brodholt, F. Bruni, M. A. Ricci, A. K. Soper, and R. Vallauri
J. Chem. Phys. , 108>, 8528 (1998).

21. The anisotropic virial-biased sampling for simulations in the isobaric-isothermal ensemble
P. Jedlovszky and M. Mezei
Mol. Phys. , 96, 293 (1999).

22. Computer simulation study of liquid CH2F2 with a new effective pair potential model
P. Jedlovszky and M. Mezei
J. Chem. Phys. , 110, 2991 (1999).

23. Comparison of different water models from ambient to supercritical conditions: a Monte Carlo simulation and molecular Ornstein-Zernike study
P. Jedlovszky and J. Richardi
J. Chem. Phys. , 110, 8019 (1999).

24. Voronoi polyhedra analysis of the local structure of water from ambient to supercritical conditions
P. Jedlovszky
J. Chem. Phys. , 111, 5975 (1999).

25. Temperature dependence of thermodynamic properties of a polarizable potential model of water
P. Jedlovszky and R. Vallauri
Mol. Phys. , 97, 1157 (1999).

26. Monte Carlo simulation of a lipid bilayer in the grand canonical ensemble using extension biased rotation
P. Jedlovszky and M. Mezei
J. Chem. Phys. , 111, 10770 (1999).

27. A molecular level explanation of the density maximum of liquid water from computer simulations with a polarizable potential model
P. Jedlovszky, M. Mezei, and R. Vallauri
Chem. Phys. Letters , 318, 155 (2000).

28. The change of the structural and thermodynamic properties of water from ambient to supercritical conditions as seen by computer simulations
P. Jedlovszky, R. Vallauri, and J. Richardi
J. Phys.: Condensed Matter , 12, A115 (2000).

29. Calculation of the free energy profile of H2O, O2, CO, CO2, NO and CHCl3 in a lipid bilayer with a cavity insertion variant of the Widom method
P. Jedlovszky and M. Mezei
J. Am. Chem. Soc. , 122, 5125 (2000).

30. The shear viscosity of liquid water from computer simulations with a polarizable potential model
U. Balucani, J. P. Brodholt, P. Jedlovszky, and R. Vallauri
Phys. Rev. E. , 62, 2971 (2000).

31. A Comprehensive Liquid Simulation Study of Neat Formic Acid
P. Mináry, P. Jedlovszky, M. Mezei, and L. Turi
J. Phys. Chem. B , 104, 8287 (2000).

32. Can the molecular Ornstein-Zernike theory be used to study H-bonding water under supercritical conditions?
J. Richardi, P. Jedlovszky, P. H. Fries, and C. Millot
J. Mol. Liquids , 87, 177 (2000).

33. Molecular clusters in liquid methanol: a Reverse Monte Carlo study
I. Bakó, P. Jedlovszky, and G. Pálinkás
J. Mol. Liquids , 87, 243 (2000).

34. The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol, and HF
P. Jedlovszky
J. Chem. Phys. , 113, 9113 (2000).

35. Orientational Order of the Water Molecules Across a Fully Hydrated DMPC Bilayer. A Monte Carlo Simulation Study
P. Jedlovszky and M. Mezei
J. Phys. Chem. B , 105, 3614 (2001).

36. Thermodynamic and structural properties of liquid water around the temperature of maximum density in a wide range of pressures. Computer simulation study with a polarizable potential model
P. Jedlovszky and R. Vallauri
J. Chem. Phys. , 115, 3750 (2001).

37. Comparison of polarizable and nonpolarizable models of hydrogen fluoride in liquid and supercritical states. A Monte Carlo simulation study
P. Jedlovszky, M. Mezei, and R. Vallauri
J. Chem. Phys. , 115, 9883 (2001).

38. The L/L interface and adsorption of SCN- anions as studied by different molecular simulation techniques
Á. Vincze, P. Jedlovszky, and G. Horvai
Anal. Sci. , 17, i317 (2001).

39. New insight into the orientational order of water molecules at the water/1,2-dichloroethane interface: A Monte Carlo simulation study
P. Jedlovszky, Á. Vincze, and G. Horvai
J. Chem. Phys. , 117, 2271 (2002).

40. Role of Base Flipping in Specific Recognition of Damaged DNA by Repair Enzymes
M. Fuxreiter, N. Luo, P. Jedlovszky, I. Simon, and R. Osman
J. Mol. Biol. , 323, 823 (2002).

41. Investigation of the thermodynamic properties of a polarizable water model in a wide range of pressures around the temperature of maximum density
P. Jedlovszky and R. Vallauri
in: Liquids Under Negative Pressure (NATO Science Series, Ser. II, Vol. 84), eds.: A. R. Imre, H. J. Maris, and P. R. Williams, Kluwer (Dordrecht), 2002, pp. 47-57.

42. Temperature of maximum density line of a polarizable water model
P. Jedlovszky and R. Vallauri
Phys. Rev. E. , 67, 011201 (2003).

43. Effect of Cholesterol on the Properties of Phospholipid Membranes. 1. Structural Features
P. Jedlovszky and M. Mezei
J. Phys. Chem. B , 107, 5311 (2003).

44. Effect of Cholesterol on the Properties of Phospholipid Membranes. 2. Free Energy Profile of Small Molecules
P. Jedlovszky and M. Mezei
J. Phys. Chem. B , 107, 5322 (2003).

45. Adsorption of apolar molecules at the water liquid/vapor interface. A Monte Carlo simulation study of the water - n-octane system
P. Jedlovszky, I. Varga, and T. Gilányi
J. Chem. Phys. , 119, 1731 (2003).

46. Properties of water/apolar interfaces as seen from Monte Carlo simulations
P. Jedlovszky, Á. Vincze, and G. Horvai
J. Mol. Liquids , 109, 99 (2004).

47. Effect of Cholesterol on the Properties of Phospholipid Membranes. 3. Local Lateral Structure
P. Jedlovszky, N. N. Medvedev, and M. Mezei
J. Phys. Chem. B , 108, 465 (2004).

48. Full description of the orientational statistics of molecules near to interfaces. Water at the interface with CCl4
P. Jedlovszky, Á. Vincze, and G. Horvai
Phys. Chem. Chem. Phys. , 6, 1874 (2004).

49. Adsorption of 1-octanol at the free water surface as studied by Monte Carlo simulation
P. Jedlovszky, I. Varga, and T. Gilányi
J. Chem. Phys. , 120, 11839 (2004); Virt. J. Biol. Phys. Res. 7 (12), 2004.

50. Free volume properties of a linear soft polymer. A computer simulation study
M. Sega, P. Jedlovszky, N. N. Medvedev, and R. Vallauri
J. Chem. Phys. , 121, 2422 (2004).

51. Implementation of the Voronoi-Delaunay Method for Analysis of Intermolecular Voids
A. V. Anikeenko, M. G. Alinchenko, V. P. Voloshin, N. N. Medvedev, P. Jedlovszky, and M. L. Gavrilova
in: Proceedings of the 4th Workshop of Computational Geometry and Applications, Lecture Notes in Computer Science 3045 (Springer, Berlin, 2004), vol. III, pp.217-226.

52. The hydrogen bonding structure of water at the vicinity of apolar interfaces. A computer simulation study
P. Jedlovszky
J. Phys.: Condensed Matter , 16, S5389 (2004).

53. Orientational order of the water molecules at the vicinity of the water-benzene interface in a broad range of thermodynamic states, as seen from Monte Carlo simulations
P. Jedlovszky, Á. Keresztúri, and G. Horvai
Faraday Discuss., 129, 35 (2005).

54. Morphology of voids in molecular systems. A Voronoi-Delaunay analysis of a simulated DMPC membrane
M. G. Alinchenko, A. V. Anikeenko, N. N. Medvedev, V. P. Voloshin, M. Mezei, and P. Jedlovszky
J. Phys. Chem. B , accepted for publication.

55. Computer simulation study of intermolecular voids in various unsaturated phosphatidylcholine lipid bilayers
A. L. Rabinovich, N. K. Balabaev, M. G. Alinchenko, V. P. Voloshin, N. N. Medvedev, and P. Jedlovszky
J. Chem. Phys. , accepted for publication.

56. Liquid-vapor and liquid-liquid phase equilibria of the BSV polarizable water model
P. Jedlovszky and R. Vallauri
J. Chem. Phys. , accepted for publication.

57. Aggregation properties of the nonionic surfactant C8E3 in bulk water and at the free water surface
A. Paszternák, É. Kiss, and P. Jedlovszky
J. Chem. Phys. , submitted for publication.

58. Calculation of the Hydration Free Energy Difference Between Pyridine and its Methyl-Substituted Derivatives by Computer Simulation Methods
L. Pártay, P. Jedlovszky, and Gábor Jancsó
J. Phys. Chem. B , submitted for publication.

59. Computer simulation investigation of the water-benzene interface in a broad range of thermodynamic states from ambient to supercritical conditions
Á. Keresztúri and P. Jedlovszky
J. Chem. Phys. , submitted for publication.

Teaching Activity:

- The Monte Carlo simulation method and its interfacial applications
(spring semester, special course, 2 lectures per week)

- Colloid chemistry laboratory for 3rd year chemistry students
(spring semester, 4 hours per week)

- Colloid chemistry laboratory for 4th year chemistry students
(autumn semester, special exercise: Investigation of the adsorption of methanol at the interface of liquid water-methanol mixture with air by Monte Carlo computer simulation)

- Participation in the training of the Hungarian Chemistry Student Olympics team

Partners

STUDENTS:

András Paszternák M. Sc. student, 2002-2004
M. Sc. Thesies (2004): Investigation of the adsorption of a non-ionic surfactant at the free water surface by computer simulations and surface tension measurements
Ágnes Keresztúri M. Sc. student, 2002-2004
M. Sc. Thesies (2004): Investigation of the temperature and pressure dependence of the structure of the water/benzene interface by computer simulation
Lívia PártayM. Sc. student, 2004-
Thesies for the National Scientific Student Conference (2004): Determination of the hydration free energy of methyl-substituted pyridine derivatives by computer simulation methods

COLLABORATORS:

Collaborators in Hungary:

George Horvai Department of Chemical Information Technology , Budapest University of Technology and Economics
Árpád Vincze Department of NBC and Environmental Security , Zrínyi Miklós National Defense University , Budapest
Gábor Jancsó KFKI Atomic Energy Research Institute, Budapest
Mónika J. Fuxreiter Institute of Enzymology , Hungarian Academy of Sciences , Budapest

Collaborators abroad:

Mihaly Mezei Department of Physiology and Biophysics , Mount Sinai School of Medicine , New York University , New York, USA
Renzo Vallauri Department of Physics , University of Trento , Italy
Nikolai N. Medvedev Laboratory of the Structure and Reactions in Solutions , Institute of Chemical Kinetics and Combustion , Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
Ivo Nezbeda E. Hala Laboratory of Thermodynamics , Institute of Chemical Processes Fundamentals , Czech Academy of Sciences , Prague, Czech Republic
Alexander L. Rabinovich Institute of Biology , Karelian Research Centre , Russian Academy of Sciences , Petrozavodsk, Russia
Paul M. Hoang Laboratory of Molecular Physics , University of Franche Comté , Besançon, France
Hongfei Wang Molecular Reaction Dynamics Laboratory , Institute of Chemistry , Chinese Academy of Sciences , Beijing, China