Vacuum technology Introduction and history

István Csonka Dávid Frigyes

Csonka István, Frigyes Dávid, ELTE © 2004-

1

The goals of the course

- Providing basic knowledge of vacuum technology and technique (theory/practice, qualitative/quantitative info)
- Do not be affraid (see "horror vacui"), but do not make mistakes either
- Why to learn from a "Master"
- Exam
- Ability to use a high vacuum system

Outline of the course

- 1. Introduction, goals, scope (FD, CSIP)
- 2. Theoretical basis (FD) Kinetic theory of gases, number of collisions, mean free path. Heat and electric conductivity, particle transport.
- 3. Forevacuum pumps and gauges (CSIP) Positive displacement and other pumps. Absolute and other vacuum gauging.
- 4. High Vacuum (HV) and Ultra High Vacuum (UHV) pumps and gauges (FD)

Outline of the course

- 5. Materials (CSIP) What to use? Everything has vapor pressure. Metal, plastic, ceramic, glass, oil, grease, vax.
- 6. Components and standard parts (CSIP) What can be bought readymade? What is to be done? Standards and other need-to-knows.
- 7. Preparative vacuumsystems (CSIP) Rotavapor, vacuum-line, metal-atom reactor, CVD.
- 8. HV-systems (FD) Without intermolecular collisions.

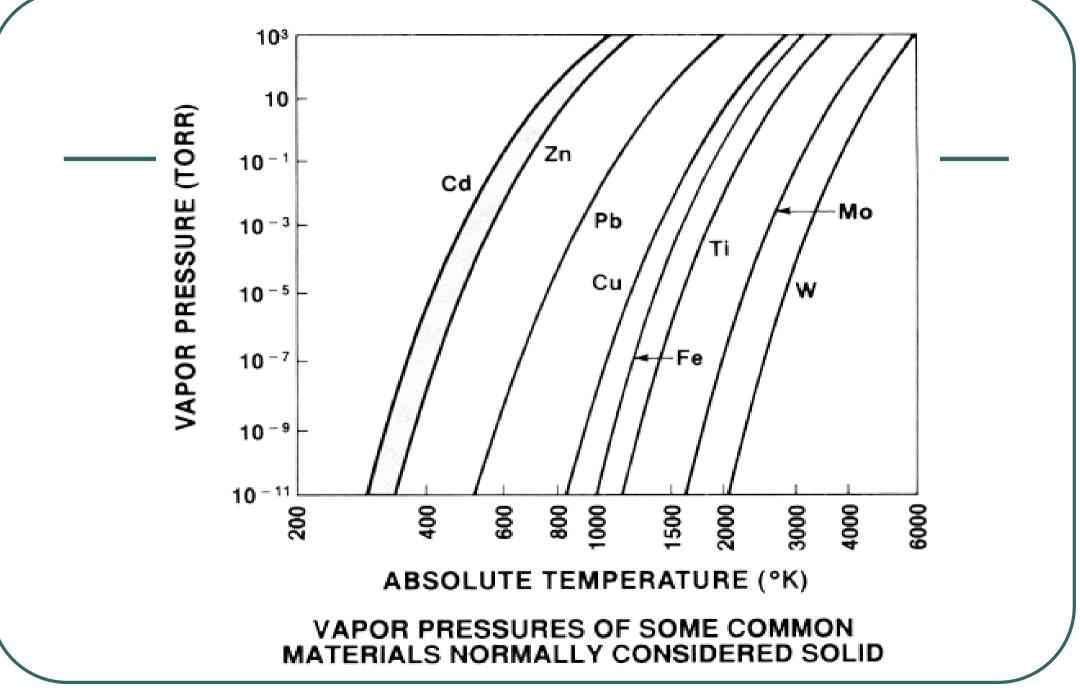
Outline of the course

- 9. UHV-systems (FD) Clean surfaces.
- 10.Design, build, and maintenance (CSIP)
- 11.Searching for errors, (pseudo)holes, cleaning (FD)
- 12.Exam (FD, CSIP)

What is vacuum? (I)

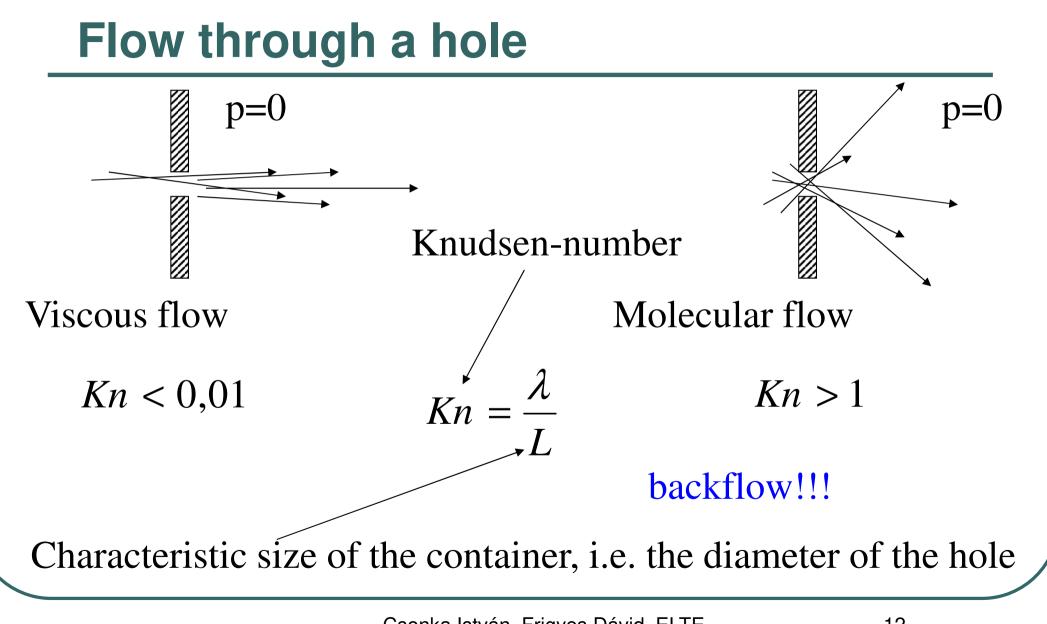
• From the practical point of view: a space where the pressure is lower than the surroundings (or the mean air pressure)

Pressure units

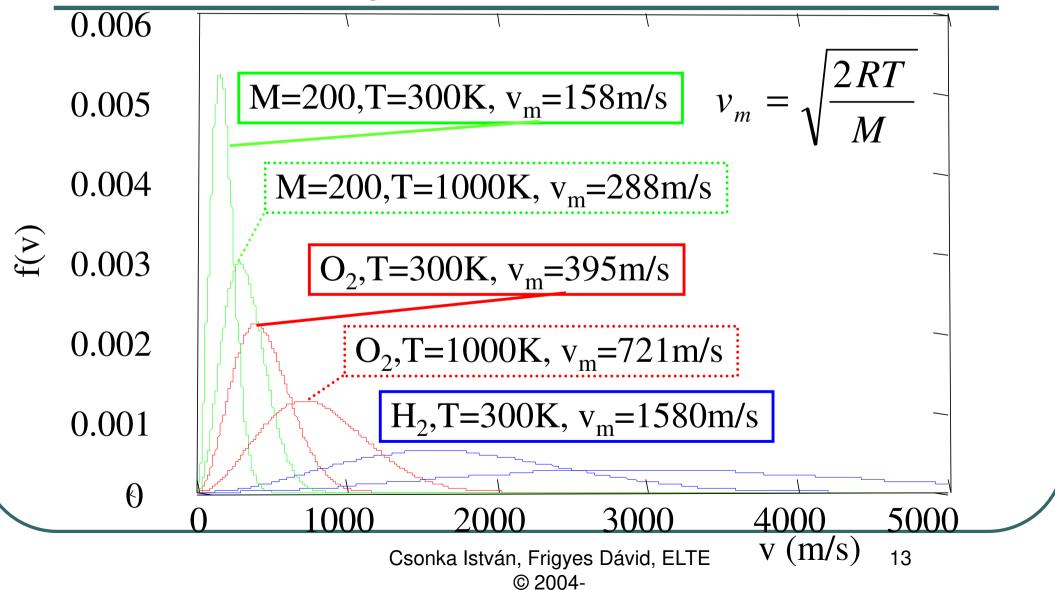

- SI: 1 Pa ($\equiv 1 \text{ N/m}^2$)
- 1 bar=10⁵ Pa (1 mbar=1 hPa \approx 1/1000atm)
- 1 atm=1,013 bar
- 1 torr=1 mmHg=1/760 atm
- (1 psi (psia, lbs; pound/in²)= 1/14,7 atm)
- (1 inchHg=1/30 atm)
- mm water

Misunderstandings

- Scale on a vacuum / gas cylinder gauge
 - Pressure (0...), excess pressure (-1...0...)
- 10⁻⁶ mbar? Will it damage the material?
 - Δp matters for the material rather than pressure. The actual difference in force between 20mmHg and 10⁻⁶mbar is less than 3%
- I open the valve just for a second...
 - 1 cm^3 of 1 atm + 1 m^3 of 10^{-6} : 1,001 · 10^{-3}


What is there in the vacuum system?

- Vacuus (3), űr, vide, vuoto means empty... but
 - air (78% N₂, 21% O₂, <1% Ar, 0,03% CO₂...)
 - water
 - Anything else
- Where does it come from?
 - No pump is perfect
 - holes
 - walls (desorption)
 - evaporation

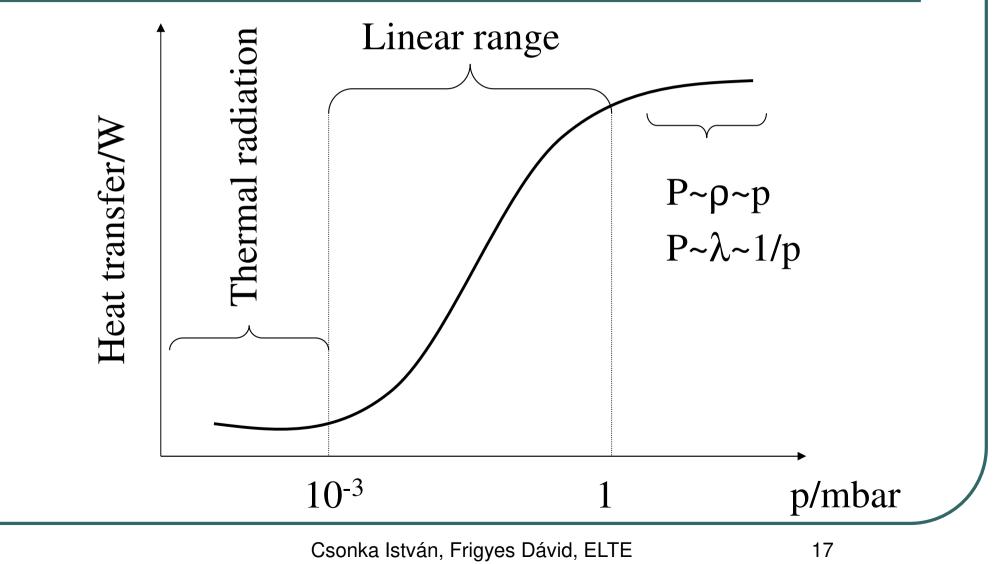


What is vacuum? (II)

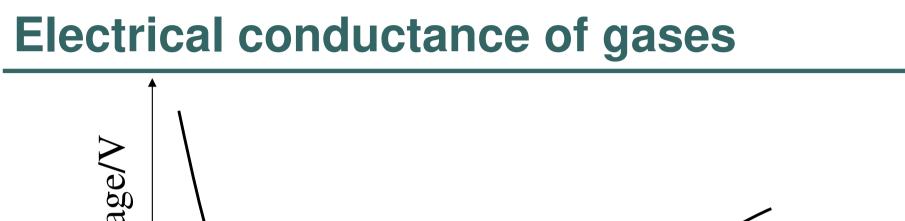
- From the theoretical point of view: a space where the mean free path is longer than the "characteristic size" of the container
- Mean free path (λ) : the distance between two adjacent collisions of a particle

Mean velocity of the molecules

Vacuum systems I.


High vacuum	Ultrahigh vacuum
10 ⁻⁵ >p>10 ⁻⁸	p<10 ⁻⁸
"few" collisions	wall-collisions are rare too
Therm. cond.	Therm. cond.
Is low	is low
Only unimolecular	r Surface reactions
Gas phase	Surface analysis/prep.
instruments	Molecular beam epitaxy
	10 ⁻⁵ >p>10 ⁻⁸ ,,few" collisions Therm. cond. Is low Only unimolecular Gas phase

Vacuum systems I.


- Definition of high vacuum (HV) and ultra high vacuum (UHV) are scale dependent.
 - There are pressure waves in interstellar space: although particle density is very low, mean free path is still much lower than interstellar distances. Not a high vacuum in this sense, having viscous flow.
 - In thin tubes mean free path is larger than diameter: atmospheric vacuum with not viscous but molecular flow high vacuum.
 - Surface is Moon is formed by solar wind: although particle bombarding is rare, time scale is very long. Not an ultra high vacuum in this sense.

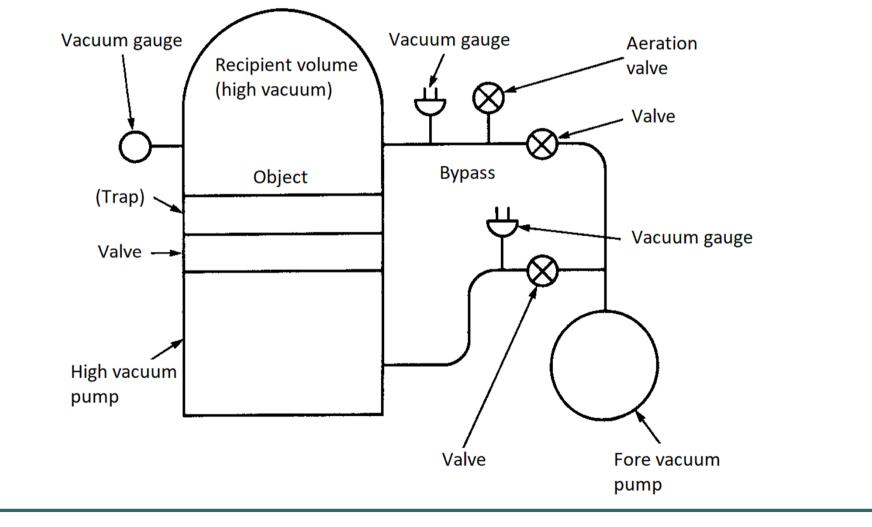

N ₂ , 300K	Atmosphere	Rough vacuum	High vacuum	Ultrahigh vacuum	
Pressure (mbar)	10 ³	10-3	10-6	10-10	
Particle density (1/cm ³)	$2 \cdot 10^{19}$	$2 \cdot 10^{13}$	$2 \cdot 10^{10}$	$2 \cdot 10^{6}$	~p
Mean free path (m)	7·10 ⁻⁸	7·10 ⁻²	70	7·10 ⁵	~1/p
Mol. Collisions (/s·cm ³)	$2 \cdot 10^{29}$	$2 \cdot 10^{17}$	$2 \cdot 10^{11}$	$2 \cdot 10^5$	~p ²
Wall collisions (/s·cm ²)	$3 \cdot 10^{23}$	$3 \cdot 10^{17}$	$3 \cdot 10^{14}$	$3 \cdot 10^{10}$	~p
Monolayer time (s)	10-9	10-3	1	104	~1/p

Thermal conductivity of gases

© 2004-

What can vacuum (technology) be used for?

- (radical) ions, free electrons, vacuum ultraviolet photons, focused laser beams, etc.
- Reactive matter (free radicals, cheese)
- Preparation of really clean surfaces
- Decreasing boiling/sublimation point
- Decreasing thermal conductivity

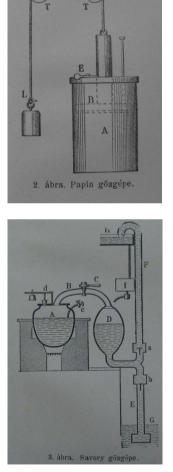

Where can we use it?

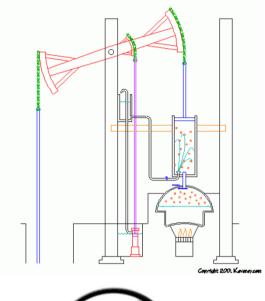
• Instruments

- Chemical analysis, structure determination (mass spectrometry, photoelectron spectroscopy)
- Surface analysis (XPS, STM, LEED...)
- Preparative processes
 - Vacuum distillation
 - CVD
 - Drying (e.g. wood, food)

- Surface analysis
 - catalysis
- Others
 - Light sources (filament lamp, discharge lamp, LED)
 - microelectronics
 - Thermal insulation (cf. Vacuum bottle)
 - Vacuum tube (electronic)
 - lyophilization
 - Space research

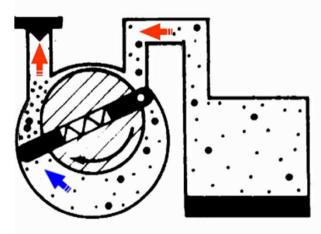
A general high vacuum system

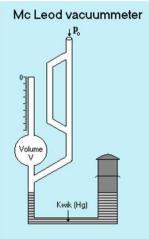

- •Old greeks used it and dealt theoretically with it ,,Horror vacui" (Aristotle)
- •Galilei. Why cannot water sucked up from any depth?
- •1643 Torricelli
- 1648 Pascal in fact the pressure of air push up the mercury column, and not the horror vacui sucks it up: torricelli-barometer in torricelli-void

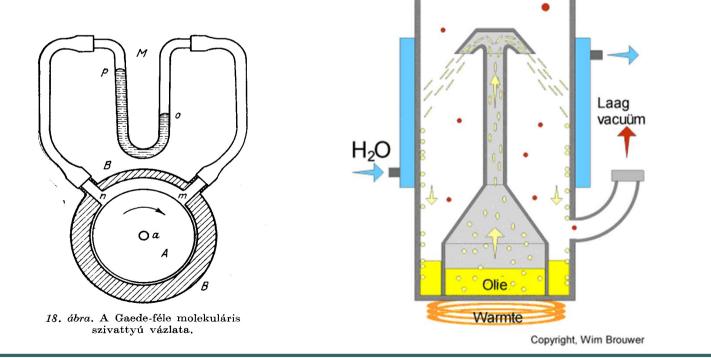


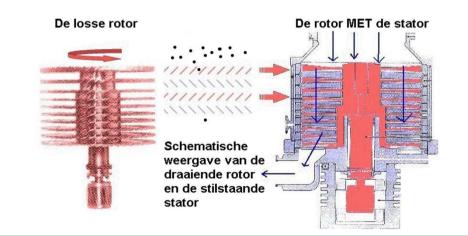
•1657 Otto von Guericke (piston pump)

- •1692 Papin steam engine
- •1698 Savery steam engine
- •1712 Newcomen steam engine
- ~1780 Watt steam engine (condenser, forced draft by steam ejector)
- 1866 Otto-Langen gas engine
 And: piston pumps (Toepler with Hg-piston), water jet pump, not much industrial use






- •End of XIX. century: "real" vacuumtechnology borns. Driving force: incadescent lamp (1879). Fore vacuum range (mean free path much shorter than characteristicdimension of vessel viscous flow). Getter pump in incadescent lamp.
- Positive displacement pump (W. Gaede), absolute vacuum



1913 molecular pump (Gaede; ancestor of turbo pump)
 1915-16 steam diffusion pump with oils and Hg (Gaede, Langmuir)

- The two above pumps made high vacuum achiavable on scale electron/vacuum tube!
- And: non-absolute vacuum gauges (thermal conductivity, ,,viscosity", ionization)
- •1928 Alkane, phtalate, sebacate oils in diffusion pumps.

- UHV was probably reached in the '30s (monolayer deposition in hours)
- Vacuum in chemical and food industry
- 40s: ion pump, titan sublumation pump
- ´60s: turbomolecular pump
- •Oil free systems
- •Vacuum everywhere

